Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution.

نویسندگان

  • Sally M Dewhurst
  • Nicholas McGranahan
  • Rebecca A Burrell
  • Andrew J Rowan
  • Eva Grönroos
  • David Endesfelder
  • Tejal Joshi
  • Dmitri Mouradov
  • Peter Gibbs
  • Robyn L Ward
  • Nicholas J Hawkins
  • Zoltan Szallasi
  • Oliver M Sieber
  • Charles Swanton
چکیده

UNLABELLED The contribution of whole-genome doubling to chromosomal instability (CIN) and tumor evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells that survive genome doubling demonstrate increased tolerance to chromosome aberrations. Tetraploid cells do not exhibit increased frequencies of structural or numerical CIN per chromosome. However, the tolerant phenotype in tetraploid cells, coupled with a doubling of chromosome aberrations per cell, allows chromosome abnormalities to evolve specifically in tetraploids, recapitulating chromosomal changes in genomically complex colorectal tumors. Finally, a genome-doubling event is independently predictive of poor relapse-free survival in early-stage disease in two independent cohorts in multivariate analyses [discovery data: hazard ratio (HR), 4.70, 95% confidence interval (CI), 1.04-21.37; validation data: HR, 1.59, 95% CI, 1.05-2.42]. These data highlight an important role for the tolerance of genome doubling in driving cancer genome evolution. SIGNIFICANCE Our work sheds light on the importance of whole-genome–doubling events in colorectal cancer evolution. We show that tetraploid cells undergo rapid genomic changes and recapitulate the genetic alterations seen in chromosomally unstable tumors. Furthermore, we demonstrate that a genome-doubling event is prognostic of poor relapse-free survival in this disease type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromosomal Instability as a Driver of Tumor Heterogeneity and Evolution.

Large-scale, massively parallel sequencing of human cancer samples has revealed tremendous genetic heterogeneity within individual tumors. Indeed, tumors are composed of an admixture of diverse subpopulations-subclones-that vary in space and time. Here, we discuss a principal driver of clonal diversification in cancer known as chromosomal instability (CIN), which complements other modes of gene...

متن کامل

I-37: Genome Instability and DNA Damage in Male Somatic and Germ Cells Expressed as Chromosomal Microdeletion and Aneuploidy Is A Major Cause of Male Infertility

Background: Sperm chromatin insufficiencies leading to low sperm count and quality, infertility and transmission of chromosomal microdeletion and aneuploidies to next generations can be due to exposure to environmental pollutions, chemicals and natural or manmade ionizing radiation. In this project which has continued for more than 10 years and is unique in many technical aspects in Iran and in...

متن کامل

I-45: FISH and Array CGH for PGD of Cancer

We developed several FISH approaches to enable preimplantation genetic diagnosis of cancer predisposition syndromes. An overview of the applications and the results of those PGDs will be provided. In addition we developed several novel tools to genome wide screen for CNVs and SNPs in single cells. Those technologies are now being applied for polar body, blastomere and blastocyst screening for c...

متن کامل

Centrosome Dysfunction Contributes to Chromosome Instability, Chromoanagenesis, and Genome Reprograming in Cancer

The unique ability of centrosomes to nucleate and organize microtubules makes them unrivaled conductors of important interphase processes, such as intracellular payload traffic, cell polarity, cell locomotion, and organization of the immunologic synapse. But it is in mitosis that centrosomes loom large, for they orchestrate, with clockmaker's precision, the assembly and functioning of the mitot...

متن کامل

Cyclin D mediates tolerance of genome-doubling in cancers with functional p53

Background Aneuploidy and chromosomal instability (CIN) are common features of human malignancy that fuel genetic heterogeneity. Although tolerance to tetraploidization, an intermediate state that further exacerbates CIN, is frequently mediated by TP53 dysfunction, we find that some genome-doubled tumours retain wild-type TP53. We sought to understand how tetraploid cells with a functional p53/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer discovery

دوره 4 2  شماره 

صفحات  -

تاریخ انتشار 2014